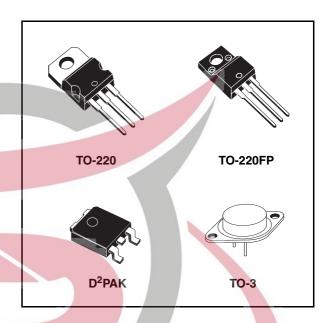


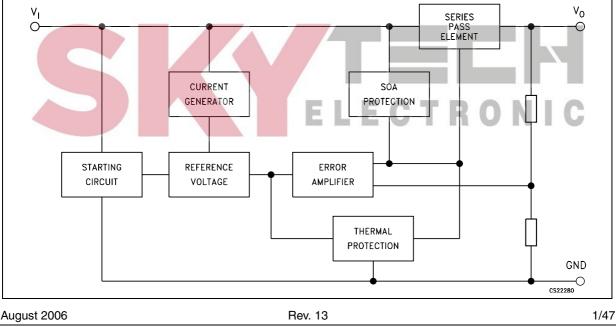
Jameco Part Number 889348

L7800 series


Positive voltage regulators

Feature summary

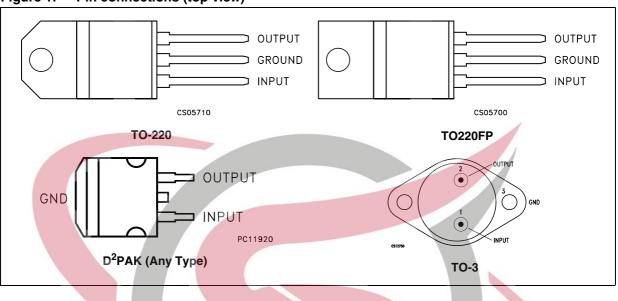
- Output current to 1.5A
- Output voltages of 5; 5.2; 6; 8; 8.5; 9; 10; 12; 15; 18; 24V
- Thermal overload protection
- Short circuit protection
- Output transition SOA protection


Description

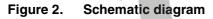
The L7800 series of three-terminal positive regulators is available in TO-220, TO-220FP, TO-3 and D²PAK packages and several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed

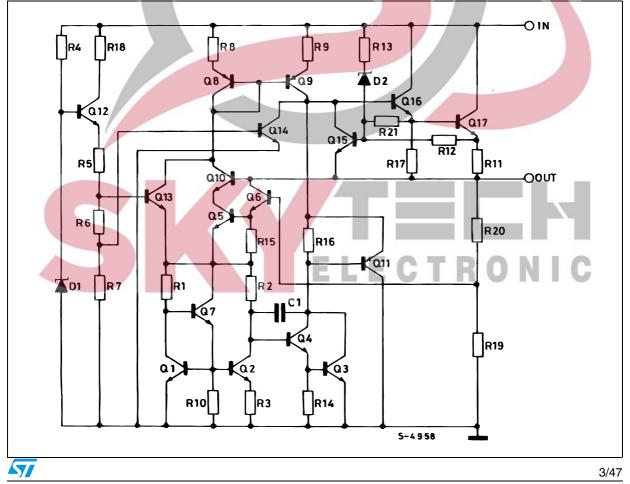
primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents.

Schematic diagram


www.st.com

Contents

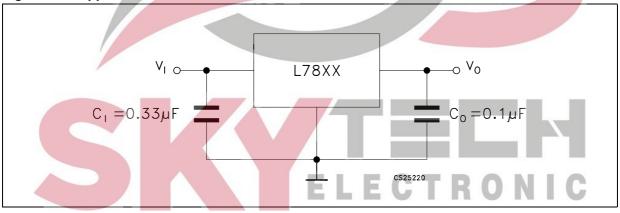

1	Pin configuration
2	Maximum ratings 4
3	Test circuits
4	Electrical characteristics
5	Typical performance
6	Package mechanical data
7	Order code
8	Revision history



1 Pin configuration

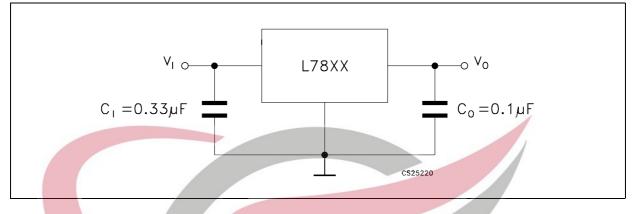
2 Maximum ratings

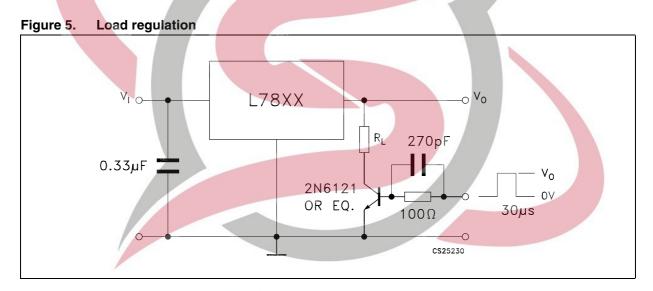
Symbol	I Parameter		Value	Unit		
М	for $V_0 = 5$ to 18V		for $V_0 = 5$ to $18V$ 35		35	V
VI	DC Input voltage	for V _O = 20, 24V	40	- v		
Ι _Ο	Output current		Internally Limited			
PD	Power dissipation		Internally Limited			
T _{STG}	Storage temperature range		-65 to 150	°C		
T		for L7800	-55 to 150	- °C		
T _{OP}	Operating junction temperature range	for L7800C	0 to 150			

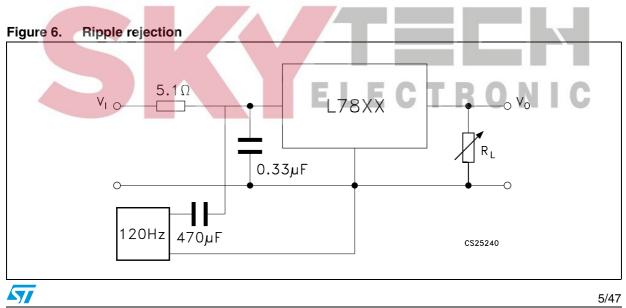

Table 1. Absolute maximum ratings

Note:

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied


Table 2.	Thermal Data					
Symbol	Parameter	D ² PAK	TO-220	TO-220FP	TO-3	Unit
R _{thJC}	Thermal resistance junction-case	3	5	5	4	°C/W
R _{thJA}	Thermal resistance junction-ambient	62.5	50	60	35	°C/W


Figure 3. Application circuits



3 Test circuits

4 Electrical characteristics

Table 3.Electrical characteristics of L7805 (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 10$ V, $I_O = 500$ mA, $C_I = 0.33 \mu$ F, $C_O = 0.1 \mu$ F unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	4.8	5	5.2	V
V _O	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 8$ to 20V	4.65	5	5.35	V
AV. (1)	$\Delta V_{O}^{(1)}$ Line regulation	$V_{I} = 7 \text{ to } 25V, T_{J} = 25^{\circ}C$		3	50	mV
700		$V_{l} = 8$ to 12V, $T_{J} = 25^{\circ}C$		1	25	IIIV
$\Delta V_{O}^{(1)}$	$\Delta V_{O}^{(1)}$ Load regulation	$I_{O} = 5 \text{ mA to } 1.5\text{A}, T_{J} = 25^{\circ}\text{C}$			100	mV
Δv _O , ,		$I_{O} = 250$ to 750mA, $T_{J} = 25^{\circ}C$			25	IIIV
l _d	Quiescent current	$T_{J} = 25^{\circ}C$			6	mA
AL	Quiescent current change	$I_{O} = 5mA$ to 1A			0.5	mA
∆l _d	Quescent current change	$V_1 = 8$ to 25 V			0.8	IIIA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		0.6		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, $T_J = 25^{\circ}C$			40	μV/V _O
SVR	Supply voltage rejection	V _I = 8 to 18V, f = 120Hz	68			dB
V _d	Dropout voltage	$I_{O} = 1A, T_{J} = 25^{\circ}C$		2	2.5	V
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.75	1.2	A
I _{scp}	Short circuit peak current	$T_{\rm J} = 25^{\circ}{\rm C}$	1.3	2.2	3.3	A

1. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 4.	Electrical characteristics of L7806 (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 11$ V, I_O
	= 500 mA, $C_I = 0.33 \ \mu\text{F}$, $C_O = 0.1 \ \mu\text{F}$ unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	$T_J = 25^{\circ}C$	5.75	6	6.25	V
V _O	Output voltage	I _O = 5mA to 1A, P _O ≤15W V _I = 9 to 21V	5.65	6	6.35	V
AV (1)	Line regulation	$V_{I} = 8 \text{ to } 25V, T_{J} = 25^{\circ}C$			60	mV
ΔνΟ. γ		$V_{I} = 9$ to 13V, $T_{J} = 25^{\circ}C$			30	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5\text{A}, T_{J} = 25^{\circ}\text{C}$			100	mV
Δνο. ,	Load regulation	$I_0 = 250$ to 750mA, $T_J = 25^{\circ}C$			30	IIIV
I _d	Quiescent current	$T_{\rm J} = 25^{\circ} \rm C$			6	mA
	Quiescent current change	$I_{O} = 5$ mA to 1A			0.5	mA
Δl _d	Quescent current change	V ₁ = 9 to 25V			0.8	III/A
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		0.7		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C			40	μV/V _O
SVR	Supply voltage rejection	V ₁ = 9 to 19V, f = 120Hz	65			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2	2.5	V
R _O	Output resistance	f = 1 KHz		19		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.75	1.2	Α
I _{scp}	Short circuit peak current	$T_J = 25^{\circ}C$	1.3	2.2	3.3	Α

1. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	7.7	8	8.3	V
V _O	Output voltage	I _O = 5mA to 1A, P _O ≤15W V _I = 11.5 to 23V	7.6	8	8.4	V
AV (1)	$\Delta V_{O}^{(1)}$ Line regulation	$V_{I} = 10.5$ to 25V, $T_{J} = 25^{\circ}C$			80	mV
Δ v 0`,		$V_{I} = 11$ to 17V, $T_{J} = 25^{\circ}C$			40	IIIV
$\Delta V_{O}^{(1)}$	Load regulation	$I_0 = 5 \text{ mA to } 1.5\text{A}, T_J = 25^{\circ}\text{C}$			100	mV
Δv ₀ , ,		$I_0 = 250$ to 750mA, $T_J = 25^{\circ}C$			40	mv
I _d	Quiescent current	$T_{\rm J} = 25^{\circ} \rm C$			6	mA
AI	Quiessent surrent shange	$I_{O} = 5mA$ to 1A			0.5	m 4
Δl _d	Quiescent current change	V ₁ = 11.5 to 25V			0.8	mA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		1		mV/°C
eN	Output noise voltage	<mark>B =10</mark> Hz to 100KHz, T _J = 25°C			40	μV/V _O
SVR	Supply voltage rejection	V _I = 11.5 to 21.5V, f = 120Hz	62			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2	2.5	V
R _O	Output resistance	f = 1 KHz		16		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.75	1.2	А
I _{scp}	Short circuit peak current	$T_J = 25^{\circ}C$	1.3	2.2	3.3	A

Table 5.	Electrical characteristics of L7808 (refer to the test circuits, $T_J = -55$ to 150°C, $V_I = 14V$, I_O
	= 500 mA, C_1 = 0.33 µF, C_0 = 0.1 µF unless otherwise specified)

1. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 6.	Electrical characteristics of L7812 (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 19$ V, I_O
	= 500 mA, $C_I = 0.33 \ \mu\text{F}$, $C_O = 0.1 \ \mu\text{F}$ unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	$T_J = 25^{\circ}C$	11.5	12	12.5	V
V _O	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 15.5$ to 27V	11.4	12	12.6	V
ΔV _O ⁽¹⁾	Line regulation	$V_{I} = 14.5$ to 30V, $T_{J} = 25^{\circ}C$			120	mV
ΔνΟ. γ	Line regulation	$V_{I} = 16 \text{ to } 22V, T_{J} = 25^{\circ}C$			60	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5\text{A}, T_{J} = 25^{\circ}\text{C}$			100	mV
Δνο. ,	Load regulation	I _O = 250 to 750mA, T _J = 25°C			60	IIIV
I _d	Quiescent current	$T_{\rm J} = 25^{\circ} \rm C$			6	mA
41	Quiescent current change	$I_{O} = 5$ mA to 1A			0.5	mA
∆l _d	Quescent current change	V ₁ = 15 to 30V			0.8	IIIA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		1.5		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C			40	μV/V _O
SVR	Supply voltage rejection	V ₁ = 15 to 25V, f = 120Hz	61			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2	2.5	V
R _O	Output resistance	f = 1 KHz		18		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.75	1.2	А
I _{scp}	Short circuit peak current	$T_{\rm J} = 25^{\circ}{\rm C}$	1.3	2.2	3.3	A

1. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Short circuit current

Short circuit peak current

I_{sc}

 I_{scp}

0.75

2.2

1.3

1.2

3.3

А

Α

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	$T_J = 25^{\circ}C$	14.4	15	15.6	V
Vo	Output voltage	I _O = 5mA to 1A, P _O ≤15W V _I = 18.5 to 30V	14.25	15	15.75	V
ΔV _O ⁽¹⁾	Line regulation	$V_{I} = 17.5$ to 30V, $T_{J} = 25^{\circ}C$			150	mV
Δνο. ,		$V_{I} = 20$ to 26V, $T_{J} = 25^{\circ}C$			75	ΠV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5\text{A}, T_{J} = 25^{\circ}\text{C}$			150	mV
Δνο. ,	Avov / Load regulation	$I_0 = 250$ to 750mA, $T_J = 25^{\circ}C$			75	IIIV
I _d	Quiescent current	$T_{\rm J} = 25^{\circ} \rm C$			6	mA
		$I_{O} = 5mA$ to 1A			0.5	m۸
ΔI_d	Quiescent current change	V _I = 18.5 to 30V			0.8	mA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		1.8		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C			40	μV/V _O
SVR	Supply voltage rejection	V _I = 18.5 to 28.5V, f = 120Hz	60			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2	2.5	V
R _O	Output resistance	f = 1 KHz		19		mΩ

Table 7.Electrical characteristics of L7815 (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 23$ V, $I_O = 500$ mA, $C_I = 0.33 \mu$ F, $C_O = 0.1 \mu$ F unless otherwise specified)

 Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

 $V_{I} = 35V, T_{J} = 25^{\circ}C$

T_J = 25°C

Table 8.	Electrical characteristics of L7818 (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 26$ V, I_O
	= 500 mA, $C_I = 0.33 \ \mu\text{F}$, $C_O = 0.1 \ \mu\text{F}$ unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	$T_J = 25^{\circ}C$	17.3	18	18.7	V
V _O	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 22$ to 33V	17.1	18	18.9	V
ΔV _O ⁽¹⁾	Line regulation	$V_{I} = 21$ to 33V, $T_{J} = 25^{\circ}C$			180	mV
Δνο. ,		$V_{I} = 24$ to 30V, $T_{J} = 25^{\circ}C$			90	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5\text{A}, T_{J} = 25^{\circ}\text{C}$			180	mV
ΔνΟ. /	Load regulation	I _O = 250 to 750mA, T _J = 25°C			90	IIIV
I _d	Quiescent current	$T_{\rm J} = 25^{\circ}{\rm C}$			6	mA
AL .	Quiescent current change	$I_{O} = 5mA$ to 1A			0.5	mA
∆l _d	Quescent current change	V ₁ = 22 to 33V			0.8	шА
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		2.3		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C			40	μV/V _O
SVR	Supply voltage rejection	V ₁ = 22 to 32V, f = 120Hz	59			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2	2.5	V
R _O	Output resistance	f = 1 KHz		22		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.75	1.2	А
I _{scp}	Short circuit peak current	$T_{J} = 25^{\circ}C$	1.3	2.2	3.3	A

1. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Output voltage

Vo

۷

57

19

20

21

Table 9.	= 500 mA, $C_1 = 0.33 \ \mu\text{F}$, $C_0 = 0.1 \ \mu\text{F}$ unless otherwise specified)										
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit					
Vo	Output voltage	$T_J = 25^{\circ}C$	19.2	20	20.8	V					

 $I_O = 5mA \text{ to } 1A, P_O \le 15W$ V_I = 24 to 35V

Table 9.	Electrical characteristics of L7820 (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 28$ V, I_O
	= 500 mA, $C_I = 0.33 \mu$ F, $C_O = 0.1 \mu$ F unless otherwise specified)

 $V_I = 22.5$ to 35V, $T_J = 25^{\circ}C$ 200 $\Delta V_{O}^{(1)}$ Line regulation mV $V_{I} = 26$ to 32V, $T_{J} = 25^{\circ}C$ 100 $I_{O} = 5 \text{ mA to } 1.5\text{A}, T_{J} = 25^{\circ}\text{C}$ 200 $\Delta V_{O}^{(1)}$ Load regulation mV I_{O} = 250 to 750mA, T_{J} = 25°C 100 Quiescent current $T_J = 25^{\circ}C$ 6 mΑ I_d $I_0 = 5mA \text{ to } 1A$ 0.5 Quiescent current change ΔI_d mΑ $V_1 = 24 \text{ to } 35 \text{V}$ 0.8 Output voltage drift 2.5 mV/°C $\Delta V_O / \Delta T$ $I_0 = 5mA$ eN Output noise voltage B = 10Hz to 100KHz, $T_J = 25^{\circ}C$ 40 $\mu V/V_O$ Supply voltage rejection SVR $V_{I} = 24$ to 35V, f = 120Hz 58 dB Dropout voltage I_O = 1A, T_J = 25°C 2 2.5 V V_{d} f = 1 KHz24 mΩ Output resistance Ro $V_{I} = 35V, T_{J} = 25^{\circ}C$ 0.75 1.2 А Short circuit current Isc T_{.1} = 25°C А Short circuit peak current 1.3 2.2 3.3 I_{scp}

Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. 1.

Table 10.	Electrical characteristics of L7824 (refer to the test circuits, $T_J = -55$ to 150° C, $V_J = 33$ V, I_O
	= 500 mA, C_{I} = 0.33 µF, C_{O} = 0.1 µF unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	23	24	25	V
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 28$ to 38V	22.8	24	25.2	V
ΔV _O ⁽¹⁾	Line regulation	$V_{I} = 27$ to 38V, $T_{J} = 25^{\circ}C$			240	mV
ΔνΟ. γ		$V_{I} = 30$ to 36V, $T_{J} = 25^{\circ}C$			120	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5\text{A}, T_{J} = 25^{\circ}\text{C}$			240	mV
Δν ₀ , γ	Load regulation	$I_{O} = 250$ to 750mA, $T_{J} = 25^{\circ}C$			120	111V
I _d	Quiescent current	$T_{\rm J} = 25^{\circ}{\rm C}$			6	mA
41	Quiescent current change	$I_{O} = 5mA$ to 1A			0.5	mA
Δl _d	Quescent current change	V ₁ = 28 to 38V			0.8	
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		3		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C			40	μV/V _O
SVR	Supply voltage rejection	$V_1 = 28$ to 38V, f = 120Hz	56			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2	2.5	V
R _O	Output resistance	f = 1 KHz		28		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.75	1.2	Α
I _{scp}	Short circuit peak current	$T_{J} = 25^{\circ}C$	1.3	2.2	3.3	A

1. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_{\rm J} = 25^{\circ} \rm C$	4.8	5	5.2	V
V _O	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 7$ to 20V	4.75	5	5.25	V
$\Delta V_{O}^{(1)}$	Line regulation	$V_{I} = 7$ to 25V, $T_{J} = 25^{\circ}C$		3	100	mV
Δ ν Ο. ,	⁽¹⁾ Line regulation	$V_{I} = 8$ to 12V, $T_{J} = 25^{\circ}C$		1	50	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_0 = 5 \text{ mA to } 1.5\text{A}, T_J = 25^{\circ}\text{C}$			100	mV
7v0° /	Load regulation	I _O = 250 to 750mA, T _J = 25°C			50	IIIV
l _d	Quiescent current	$T_{\rm J} = 25^{\circ} C$			8	mA
41		$I_{O} = 5$ mA to 1A			0.5	mA
Δl _d	Quiescent current change	V ₁ = 7 to 25 V			0.8	ma
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		-1.1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		40		μV/V _O
SVR	Supply voltage rejection	V ₁ = 8 to 18V, f = 120Hz	62			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	$V_{\rm I} = 35V, T_{\rm J} = 25^{\circ}{\rm C}$		0.75		А
I _{scp}	Short circuit peak current	$T_{\rm J} = 25^{\circ}{\rm C}$		2.2		А

Table 11.Electrical characteristics of L7805C (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 10$ V, $I_O = 500$ mA, $C_I = 0.33 \mu$ F, $C_O = 0.1 \mu$ F unless otherwise specified)

1. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 12.	Electrical characteris	tics of L7852C (refer to the test circu	its, T _J =	-55 to 1	50°C, V	′ _I = 10V,
	I _O = 500 mA, C _I = 0.33	μ F, C _O = 0.1 μ F unless otherwise spe	ecified)			

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	$T_J = 25^{\circ}C$	5.0	5.2	5.4	V
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 8$ to 20V	4.95	5.2	5.45	V
ΔV _O ⁽¹⁾	Line regulation	$V_{I} = 7 \text{ to } 25V, T_{J} = 25^{\circ}C$		3	105	mV
ΔνΟ. γ		$V_{I} = 8$ to 12V, $T_{J} = 25^{\circ}C$		1	52	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_O = 5 \text{ mA to } 1.5\text{A}, T_J = 25^{\circ}\text{C}$			105	mV
Δν ₀ , γ	Load regulation	$I_{O} = 250$ to 750mA, $T_{J} = 25^{\circ}C$			52	111V
I _d	Quiescent current	$T_{\rm J} = 25^{\circ}{\rm C}$			8	mA
AL .	Quiescent current change	$I_{O} = 5mA$ to 1A			0.5	mA
Δl _d	Quescent current change	V ₁ = 7 to 25 V			1.3	
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		-1		mV/°C
eN	Output noise voltage	$B = 10$ Hz to 100KHz, $T_J = 25^{\circ}C$		42		μV/V _O
SVR	Supply voltage rejection	V ₁ = 8 to 18V, f = 120Hz	61			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.75		А
I _{scp}	Short circuit peak current	$T_{J} = 25^{\circ}C$		2.2		A

1. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	5.75	6	6.25	V
V _O	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 8$ to 21V	5.7	6	6.3	V
$\Delta V_{O}^{(1)}$	Line regulation	$V_{I} = 8$ to 25V, $T_{J} = 25^{\circ}C$			120	mV
Δ ν Ο. ,	VO ⁽¹⁾ Line regulation	$V_{I} = 9$ to 13V, $T_{J} = 25^{\circ}C$			60	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_0 = 5 \text{ mA to } 1.5\text{A}, T_J = 25^{\circ}\text{C}$			120	mV
7v0° /	Load regulation	I _O = 250 to 750mA, T _J = 25°C			60	IIIV
l _d	Quiescent current	$T_{\rm J} = 25^{\circ} C$			8	mA
41		$I_{O} = 5mA$ to 1A			0.5	mA
Δl _d	Quiescent current change	V ₁ = 8 to 25V			1.3	ШA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		-0.8		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		45		μV/V _O
SVR	Supply voltage rejection	V ₁ = 9 to 19V, f = 120Hz	59			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		19		mΩ
I _{sc}	Short circuit current	$V_{\rm I} = 35V, T_{\rm J} = 25^{\circ}{\rm C}$		0.55		А
I _{scp}	Short circuit peak current	$T_{\rm J} = 25^{\circ} \rm C$		2.2		А

Table 13.Electrical characteristics of L7806C (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 11$ V, $I_O = 500$ mA, $C_I = 0.33 \mu$ F, $C_O = 0.1 \mu$ F unless otherwise specified)

1. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 14.	Electrical characteris	tics of L7808C (refer to the test circu	its, T _J =	-55 to 1	50°C, V	′ _I = 14V,
	I _O = 500 mA, C _I = 0.33	$\mu\text{F},C_O$ = 0.1 μF unless otherwise spe	ecified)			-

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	7.7	8	8.3	V
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 10.5$ to 25V	7.6	8	8.4	V
ΔV _O ⁽¹⁾	Line regulation	V_{I} = 10.5 to 25V, T_{J} = 25°C			160	mV
Δνο`΄		$V_{I} = 11$ to 17V, $T_{J} = 25^{\circ}C$			80	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5\text{A}, T_{J} = 25^{\circ}\text{C}$			160	mV
Δν ₀ , ,	oad regulation	$I_{O} = 250$ to 750mA, $T_{J} = 25^{\circ}C$			80	IIIV
I _d	Quiescent current	$T_{\rm J} = 25^{\circ} \rm C$			8	mA
41		$I_{O} = 5mA$ to 1A			0.5	mA
Δl _d	Quiescent current change	V _I = 10.5 to 25V			1	ША
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		-0.8		mV/°C
eN	Output noise voltage	$B = 10$ Hz to 100KHz, $T_J = 25^{\circ}C$		52		μV/V _O
SVR	Supply voltage rejection	V _I = 11.5 to 21.5V, f = 120Hz	56			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		16		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.45		А
I _{scp}	Short circuit peak current	$T_{J} = 25^{\circ}C$		2.2		А

1. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	8.2	8.5	8.8	V
Vo	Output voltage	$I_{O} = 5mA$ to 1A, $P_{O} \le 15W$ $V_{I} = 11$ to 26V	8.1	8.5	8.9	V
$\Delta V_{O}^{(1)}$		$V_{I} = 11 \text{ to } 27V, T_{J} = 25^{\circ}C$			160	
Δv_0	Line regulation	V _I = 11.5 to 17.5V, T _J = 25°C			80	mV
w (1)		$I_{O} = 5 \text{ mA to } 1.5\text{A}, T_{J} = 25^{\circ}\text{C}$			160	
∆V _O ⁽¹⁾	Load regulation	$I_{O} = 250$ to 750mA, $T_{J} = 25^{\circ}C$			80	mV 0
Id	Quiescent current	$T_J = 25^{\circ}C$			8	mA
		$I_{O} = 5mA$ to 1A			0.5	
∆l _d	Quiescent current change	V ₁ = 11 to 27V			1	mA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		-0.8		mV/°C
eN	Output noise voltage	<mark>B =10</mark> Hz to 100KHz, T _J = 25°C		55		μV/V _O
SVR	Supply voltage rejection	V ₁ = 12 to 22V, f = 120Hz	56			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		16		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.45		А
I _{scp}	Short circuit peak current	$T_J = 25^{\circ}C$		2.2		A

Table 15.Electrical characteristics of L7885C (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 14.5$ V, $I_O = 500$ mA, $C_I = 0.33$ µF, $C_O = 0.1$ µF unless otherwise specified)

1. Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 16.	Electrical characteris	tics of L7809C (refer to the test circu	its, T _J =	-55 to 1	50°C, V	′ _I = 15V,
	I _O = 500 mA, C _I = 0.33	μ F, C _O = 0.1 μ F unless otherwise spe	ecified)			

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	$T_J = 25^{\circ}C$	8.64	9	9.36	V
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 11.5$ to 26V	8.55	9	9.45	V
ΔV _O ⁽¹⁾	Line regulation	$V_{I} = 11.5$ to 26V, $T_{J} = 25^{\circ}C$			180	mV
ΔνΟ. γ		$V_{I} = 12$ to 18V, $T_{J} = 25^{\circ}C$			90	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5\text{A}, T_{J} = 25^{\circ}\text{C}$			180	mV
Δν ₀ , γ	Load regulation	$I_{O} = 250$ to 750mA, $T_{J} = 25^{\circ}C$			90	IIIV
I _d	Quiescent current	$T_{\rm J} = 25^{\circ}{\rm C}$			8	mA
Δl _d	Quiescent current change	$I_{O} = 5mA$ to 1A			0.5	mA
Δīd	Quescent current change	V ₁ = 11.5 to 26V			1	IIIA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		-1		mV/°C
eN	Output noise voltage	$B = 10$ Hz to 100KHz, $T_J = 25^{\circ}C$		70		$\mu V/V_O$
SVR	Supply voltage rejection	V ₁ = 12 to 23V, f = 120Hz	55			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.40		А
I _{scp}	Short circuit peak current	$T_J = 25^{\circ}C$		2.2		A

1. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	$T_J = 25^{\circ}C$	9.6	10	10.4	V
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 12.5$ to 26V	9.5	10	10.5	V
ΔV _O ⁽¹⁾	Line regulation	$V_{I} = 12.5$ to 26V, $T_{J} = 25^{\circ}C$			200	mV
ΔνΟ. γ		$V_{I} = 13.5$ to 19V, $T_{J} = 25^{\circ}C$			100	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5\text{A}, T_{J} = 25^{\circ}\text{C}$			200	mV
Δν ₀ , ,	Load regulation	$I_0 = 250$ to 750mA, $T_J = 25^{\circ}C$			100	IIIV
I _d	Quiescent current	$T_{\rm J} = 25^{\circ} \rm C$			8	mA
41	Quiescent current change	$I_{O} = 5$ mA to 1A			0.5	mA
Δl _d		V ₁ = 12.5 to 26V			1	ША
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		70		μV/V _O
SVR	Supply voltage rejection	V ₁ = 13 to 23V, f = 120Hz	55			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.40		А
I _{scp}	Short circuit peak current	$T_J = 25^{\circ}C$		2.2		А

Table 17.Electrical characteristics of L7810C (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 15$ V,
 $I_O = 500$ mA, $C_I = 0.33 \mu$ F, $C_O = 0.1 \mu$ F unless otherwise specified)

1. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 18.	Electrical characteris	tics of L7812C (refer to the test circu	its, T _J =	-55 to 1	50°C, V	′ _I = 19V,
	I _O = 500 mA, C _I = 0.33	μ F, C _O = 0.1 μ F unless otherwise spe	ecified)			

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	11.5	12	12.5	V
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 14.5$ to 27V	11.4	12	12.6	V
ΔV _O ⁽¹⁾	Line regulation	$V_{I} = 14.5$ to 30V, $T_{J} = 25^{\circ}C$			240	mV
ΔνΟ. γ		$V_{I} = 16 \text{ to } 22V, T_{J} = 25^{\circ}C$			120	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5\text{A}, T_{J} = 25^{\circ}\text{C}$			240	mV
Δν ₀ , γ	Load regulation	$I_{O} = 250$ to 750mA, $T_{J} = 25^{\circ}C$			120	IIIV
I _d	Quiescent current	$T_{\rm J} = 25^{\circ}{\rm C}$			8	mA
AL .	Quiescent current change	$I_{O} = 5mA$ to 1A			0.5	mA
Δl _d	Quescent current change	V ₁ = 14.5 to 30V			1	
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, $T_J = 25^{\circ}C$		75		μV/V _O
SVR	Supply voltage rejection	V ₁ = 15 to 25V, f = 120Hz	55			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		18		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.35		А
I _{scp}	Short circuit peak current	$T_{J} = 25^{\circ}C$		2.2		A

1. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	14.5	15	15.6	V
V _O	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 17.5$ to 30V	14.25	15	15.75	V
ΔV _O ⁽¹⁾	Line regulation	$V_{I} = 17.5$ to 30V, $T_{J} = 25^{\circ}C$			300	mV
Δ ν Ο. ,		$V_{I} = 20$ to 26V, $T_{J} = 25^{\circ}C$			150	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_0 = 5 \text{ mA to } 1.5\text{A}, T_J = 25^{\circ}\text{C}$			300	mV
7v0° /	Load regulation	I _O = 250 to 750mA, T _J = 25°C			150	IIIV
l _d	Quiescent current	$T_{\rm J} = 25^{\circ} C$			8	mA
41	Quiescent current change	$I_{O} = 5$ mA to 1A			0.5	mA
Δl _d		V _I = 17.5 to 30V			1	ША
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		90		$\mu V/V_O$
SVR	Supply voltage rejection	V _I = 18.5 to 28.5V, f = 120Hz	54			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		19		mΩ
I _{sc}	Short circuit current	$V_{\rm I} = 35V, T_{\rm J} = 25^{\circ}{\rm C}$		0.23		А
I _{scp}	Short circuit peak current	$T_{\rm J} = 25^{\circ} \rm C$		2.2		А

Table 19.Electrical characteristics of L7815C (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 23$ V, $I_O = 500$ mA, $C_I = 0.33 \,\mu$ F, $C_O = 0.1 \,\mu$ F unless otherwise specified)

1. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 20.	Electrical characteris	tics of L7818C (refer to the test circui	its, T _J =	-55 to 1	50°C, V	₁ = 26V,
	I _O = 500 mA, C _I = 0.33	μ F, C _O = 0.1 μ F unless otherwise spe	ecified)			

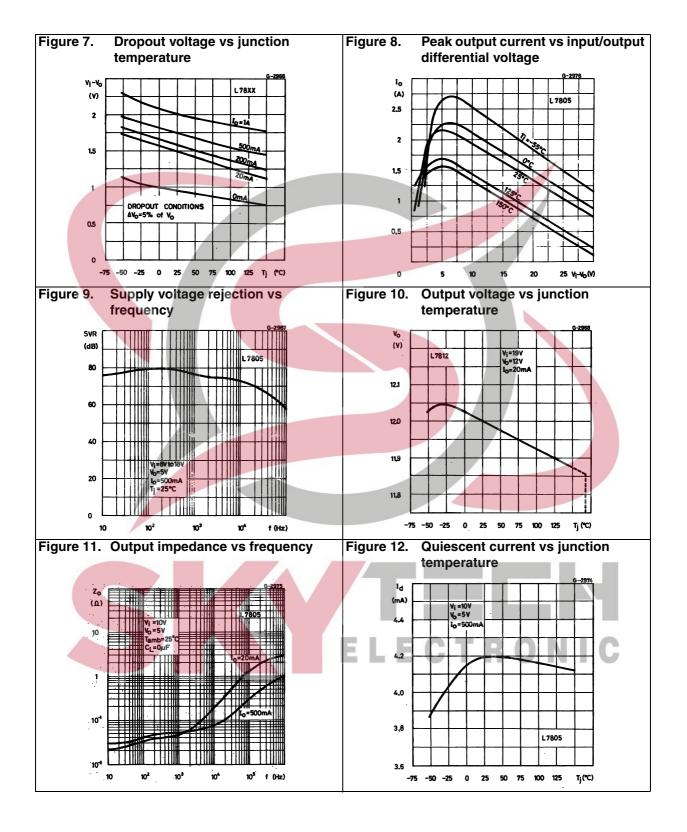
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	17.3	18	18.7	V
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 21$ to 33V	17.1	18	18.9	V
ΔV _O ⁽¹⁾	Line regulation	$V_{I} = 21$ to 33V, $T_{J} = 25^{\circ}C$			360	mV
Δνο`΄		$V_{I} = 24$ to 30V, $T_{J} = 25^{\circ}C$			180	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5\text{A}, T_{J} = 25^{\circ}\text{C}$			360	mV
Δν ₀ , ,	Load regulation	$I_{O} = 250$ to 750mA, $T_{J} = 25^{\circ}C$			180	IIIV
I _d	Quiescent current	$T_{\rm J} = 25^{\circ} \rm C$			8	mA
41	Quiescent current change	$I_{O} = 5mA$ to 1A			0.5	mA
Δl _d		V ₁ = 21 to 33V			1	IIIA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		110		μV/V _O
SVR	Supply voltage rejection	$V_1 = 22$ to 32V, f = 120Hz	53			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		22		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.20		А
I _{scp}	Short circuit peak current	$T_{J} = 25^{\circ}C$		2.1		A

1. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_{\rm J} = 25^{\circ} \rm C$	19.2	20	20.8	V
V _O	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 23$ to 35V	19	20	21	V
ΔV _O ⁽¹⁾	Line regulation	$V_{I} = 22.5$ to 35V, $T_{J} = 25^{\circ}C$			400	mV
ΔνΟ. γ		$V_{I} = 26 \text{ to } 32V, T_{J} = 25^{\circ}C$			200	111V
ΔV _O ⁽¹⁾	Load regulation	$I_0 = 5 \text{ mA to } 1.5\text{A}, T_J = 25^{\circ}\text{C}$			400	m\/
Δνο. ,	Load regulation	$I_0 = 250$ to 750mA, $T_J = 25^{\circ}C$			200	200 mV
I _d	Quiescent current	$T_{\rm J} = 25^{\circ} \rm C$			8	mA
	Quiescent current change	$I_{O} = 5mA$ to 1A			0.5	mA
Δl _d		V ₁ = 23 to 35V			1	ШA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz, T _J = 25°C		150		μV/V _O
SVR	Supply voltage rejection	V ₁ = 24 to 35V, f = 120Hz	52			dB
V _d	Dropout voltage	I _O = 1A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 KHz		24		mΩ
I _{sc}	Short circuit current	$V_{I} = 35V, T_{J} = 25^{\circ}C$		0.18		А
I _{scp}	Short circuit peak current	$T_J = 25^{\circ}C$		2.1		A

Table 21.Electrical characteristics of L7820C (refer to the test circuits, $T_J = -55$ to 150° C, $V_I = 28$ V, $I_O = 500$ mA, $C_I = 0.33 \mu$ F, $C_O = 0.1 \mu$ F unless otherwise specified)

1. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

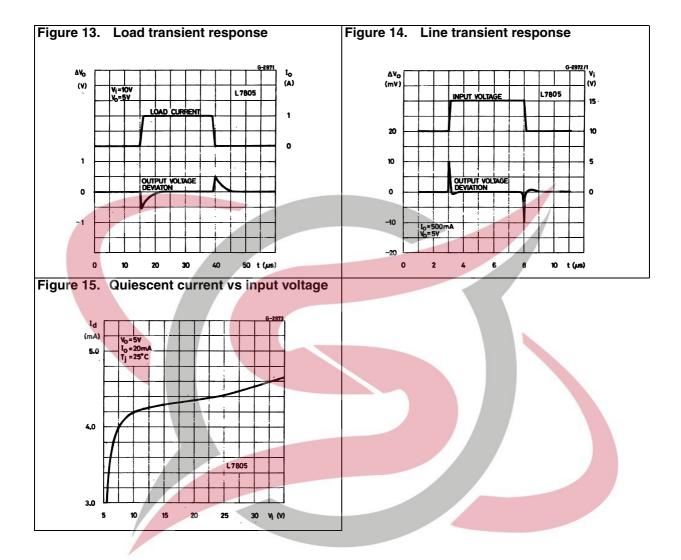
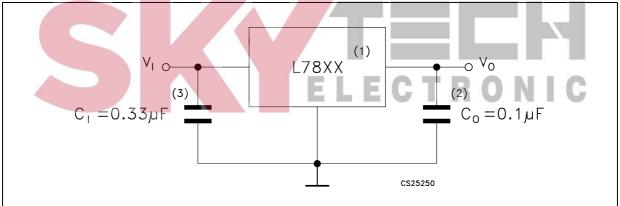

Table 22.	Electrical characteristics of L7824C (refer to the test circuits, $T_J = -55$ to 150°C, $V_I = 33V$,
	$I_0 = 500 \text{ mA}, C_1 = 0.33 \mu\text{F}, C_0 = 0.1 \mu\text{F}$ unless otherwise specified)

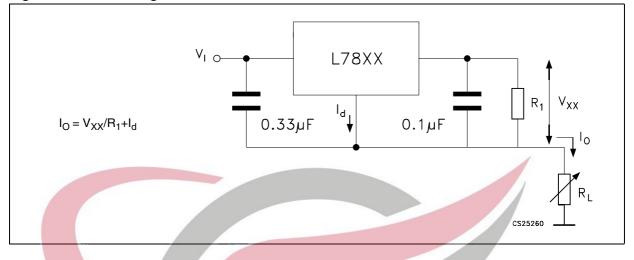
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_{\rm J} = 25^{\circ} \rm C$	23	24	25	V
Vo	Output voltage	$I_O = 5mA$ to 1A, $P_O \le 15W$ $V_I = 27$ to 38V	22.8	24	25.2	V
ΔV _O ⁽¹⁾	Line regulation	$V_{I} = 27$ to 38V, $T_{J} = 25^{\circ}C$			480	mV
ΔνΟ. Υ		$V_{I} = 30$ to 36V, $T_{J} = 25^{\circ}C$			240	111V
$\Delta V_{O}^{(1)}$	Lood regulation	$I_{O} = 5 \text{ mA to } 1.5\text{A}, T_{J} = 25^{\circ}\text{C}$			480	mV
ΔvO	Load regulation	$I_0 = 250 \text{ to } 750 \text{mA}, T_J = 25^{\circ}\text{C}$			240	
I _d	Quiescent current	$T_{\rm J} = 25^{\circ}{\rm C}$			8	mA
41	Quiescent current change	$I_0 = 5mA$ to 1A			0.5	mA
∆l _d	Quiescent current change	V ₁ = 27 to 38V			1	IIIA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5mA		-1.5		mV/°C
eN	Output noise voltage	$B = 10Hz$ to 100KHz, $T_J = 25^{\circ}C$		170		μV/V _O
SVR	Supply voltage rejection	$V_1 = 28$ to 38V, f = 120Hz	50			dB
V _d	Dropout voltage	$I_{O} = 1A, T_{J} = 25^{\circ}C$		2		V
R _O	Output resistance	f = 1 KHz		28		mΩ
I _{sc}	Short circuit current	$V_{l} = 35V, T_{J} = 25^{\circ}C$		0.15		A
I _{scp}	Short circuit peak current	$T_{\rm J} = 25^{\circ} \rm C$		2.1		Α

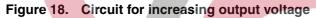
1. Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

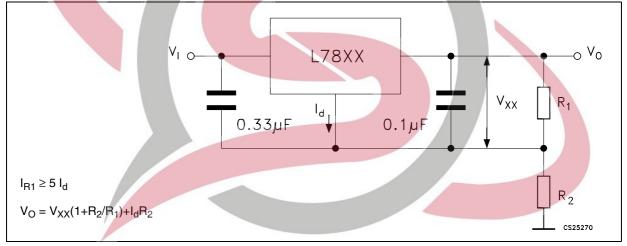
5 Typical performance

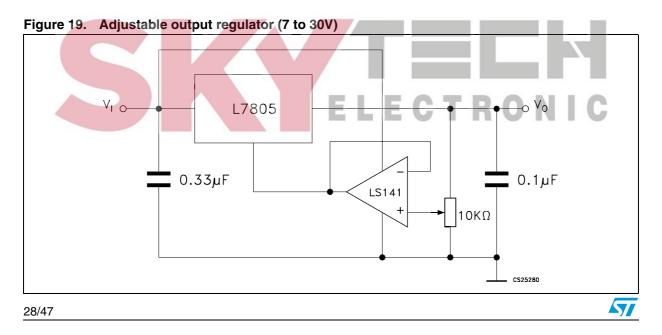
26/47

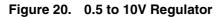



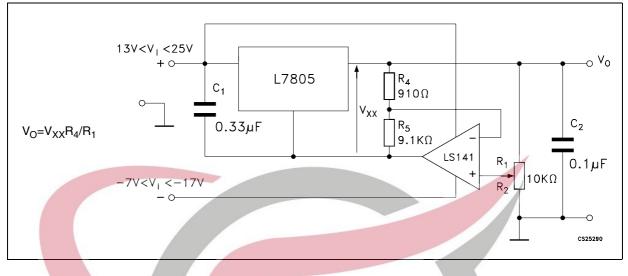

Figure 16. Fixed output regulator

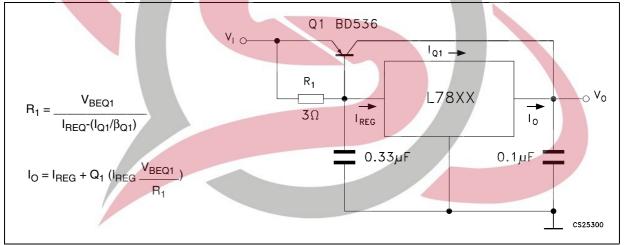


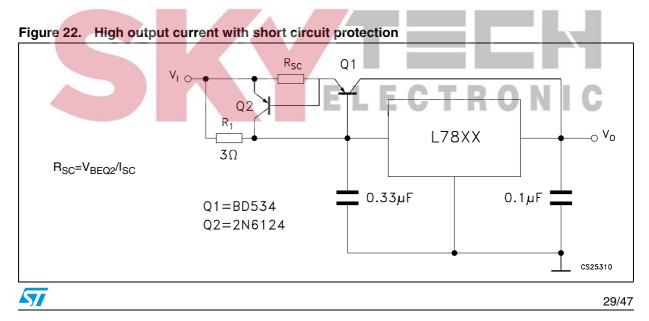

- 1. To specify an output voltage, substitute voltage value for "XX".
- 2. Although no output capacitor is need for stability, it does improve transient response.
- 3. Required if regulator is locate an appreciable distance from power supply filter.

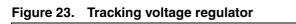

27/47

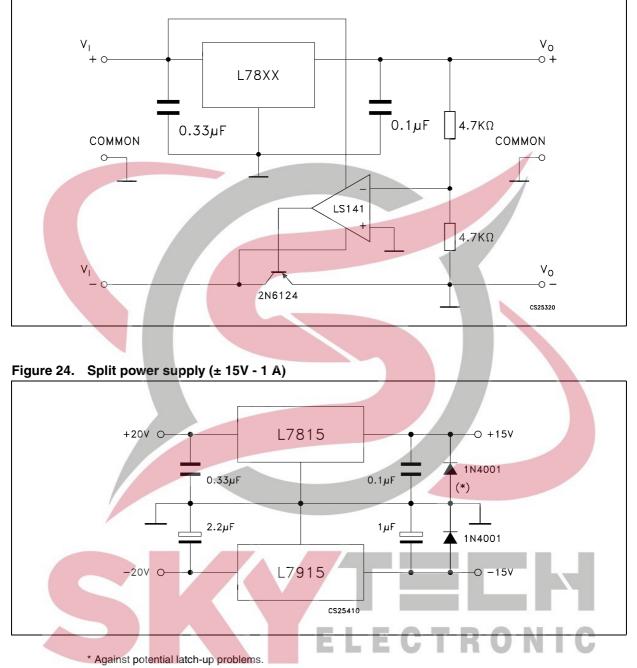

Figure 17. Current regulator

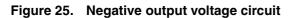


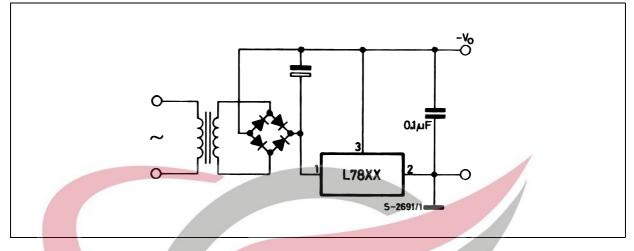


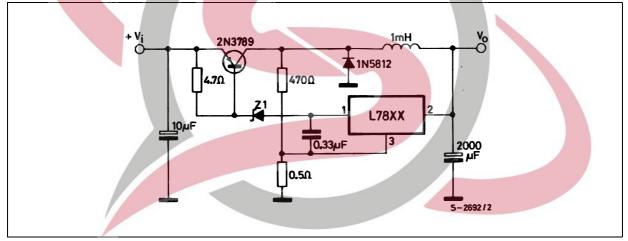


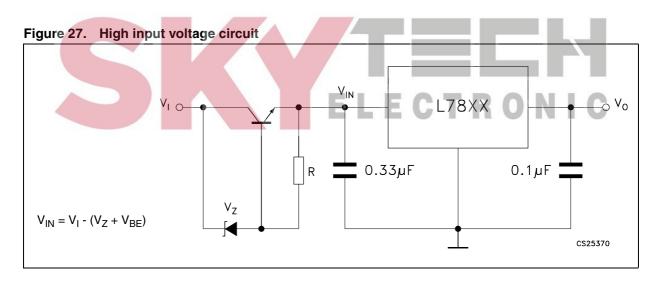


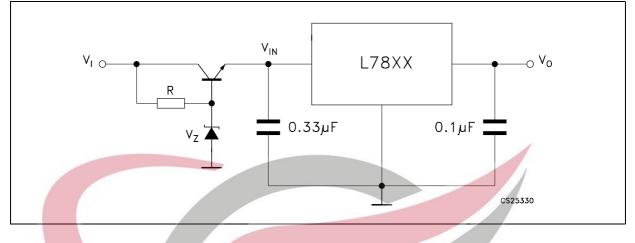


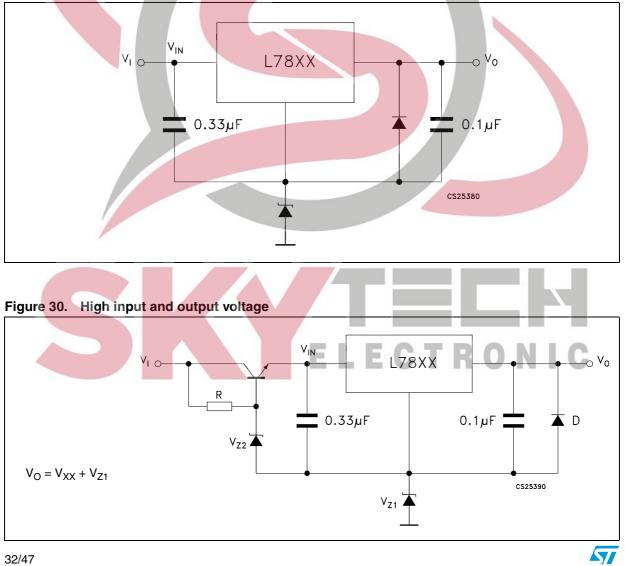

Figure 21. High current voltage regulator

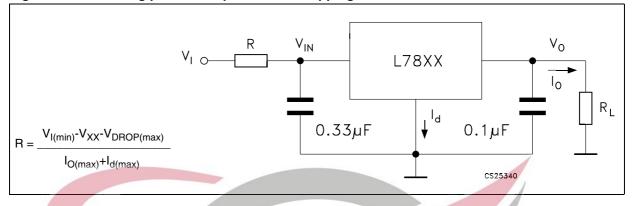


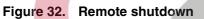


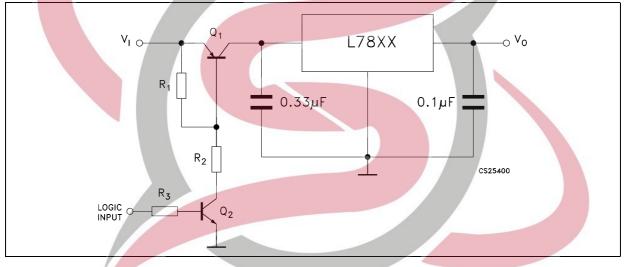




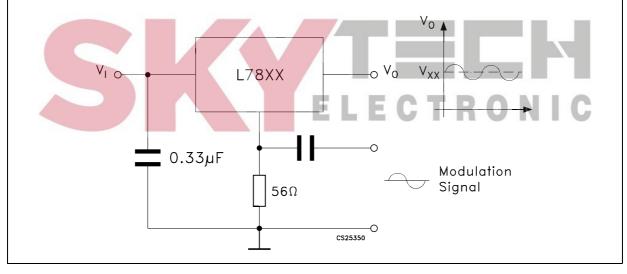



31/47









Note: The circuit performs well up to 100 KHz.

33/47

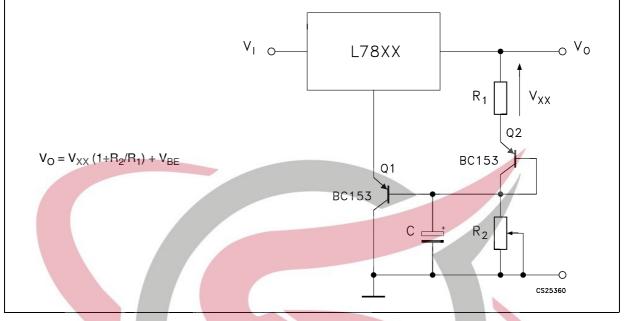
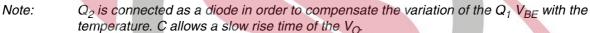
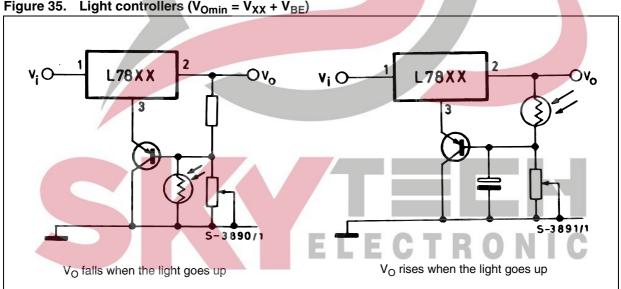
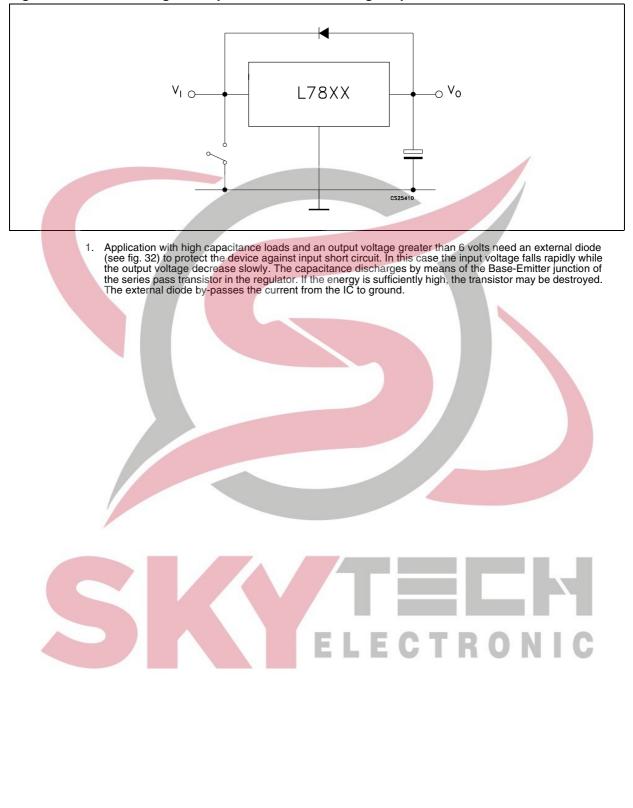





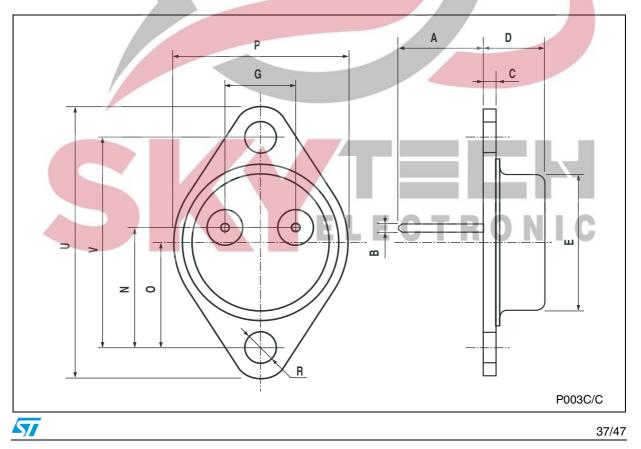
Figure 34. Adjustable output voltage with temperature compensation

Figure 36. Protection against input short-circuit with high capacitance loads

57

6 Package mechanical data

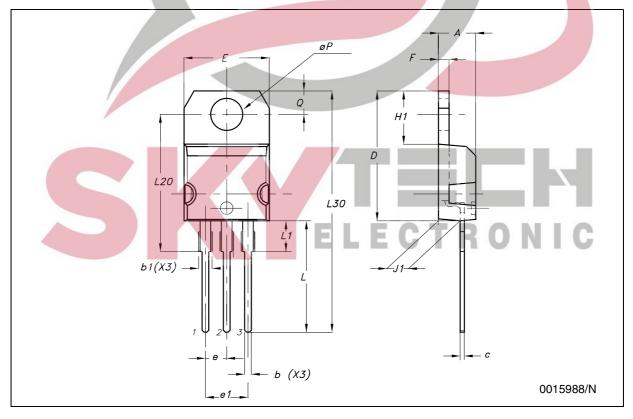
In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.



Γ

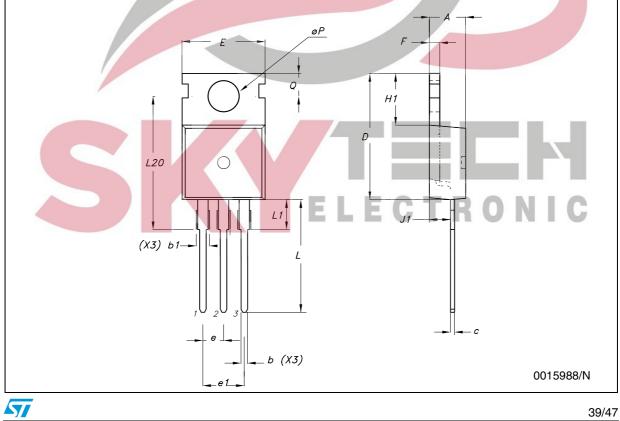
		10-3 MEC	CHANICAL	DAIA		
DIM.		mm.		inch		
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А		11.85			0.466	
В	0.96	1.05	1.10	0.037	0.041	0.043
С			1.70			0.066
D			8.7			0.342
Е			20.0			0.787
G		10.9			0.429	
N		16.9			0.665	
Р			26.2			1.031
R	3.88		4.09	0.152		0.161
U			39.5			1.555
V		30.10			1.185	

. .


- -

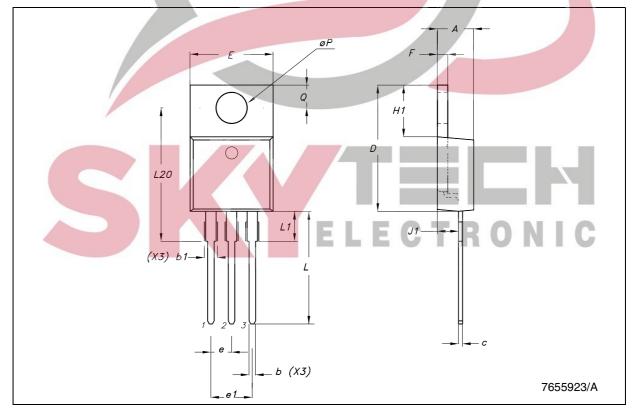
38/47

DIM.		mm.		inch		
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.067
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.600		0.620
Е	10.0		10.40	0.393		0.409
е	2.4		2.7	0.094		0.106
e1	4.95		5.15	0.194		0.203
F	1.23		1.32	0.048		0.051
H1	6.2		6.6	0.244		0.260
J1	2.40		2.72	0.094		0.107
L	13.0		14.0	0.511		0.551
L1	3.5		3.93	0.137		0.154
L20		16.4			0.645	
L30		28.9			1.138	
φP	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116


TO-220 (A TYPE) MECHANICAL DATA

57

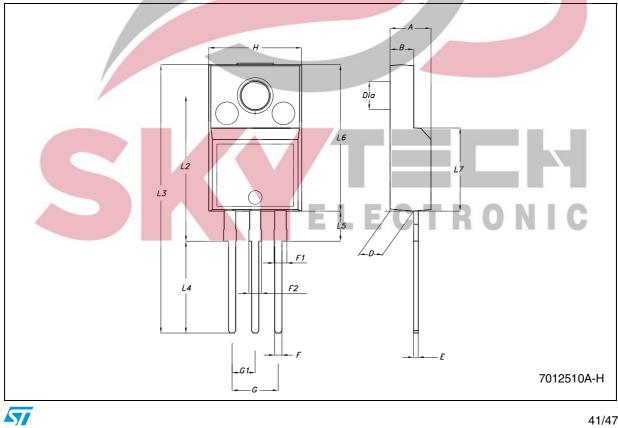
DIM. MI A 4.3 b 0.7 b1 1.4 c 0.4 D 0.4 E 9.6 e 9.6 e1 1.2 H1 2.2	30 70 42 45 15 30 2. 5.	YP MAX 4.70 0.90 1.62 0.60 5.70 10.20 54 08	0.169 0.028 0.056 0.018	0.618 0.200	MAX. 0.185 0.035 0.064 0.024
b 0.7 b1 1.2 c 0.2 D E 9.8 e e e e e e e e e e e e e e e e e e e	70 42 45 15 30 2. 5.	0.90 1.62 0.60 5.70 10.20 54 08	0.028 0.056 0.018	0.100	0.035 0.064 0.024 0.402
b1 1.2 c 0.2 D	42 45 15 30 2. 5.	1.62 0.60 5.70 10.20 54 08	2 0.056 0.018	0.100	0.064
c 0.4 D 9.8 e 91 F 1.2 H1	45 30 2. 5.	0.60 5.70 54 08	0.018	0.100	0.024
D E 9.8 e e1 F 1.2 H1	15 30 2. 5.	5.70 10.20 54 08		0.100	0.402
E 9.8 e e1 F 1.2 H1	30 2. 5.	10.20 54 08	0 0.386	0.100	
e e1 F 1.2 H1	2. 5.	54 08	0 0.386		
e1 F 1.2 H1	5.	.08			
F 1.2				0.200	6
H1	25	1.00			
		1.39	0.049		0.055
J1 2.2	6	5.5		0.256	
	20	2.60	0.087		0.202
L 12.	88	13.28	3 0.507		0.523
L1		3		0.118	
L20 15.	.70	16.1	0.618		0.634
L30	28	8.9		1.138	
φP 3.5	50	3.70	0.138		0.146



39/47

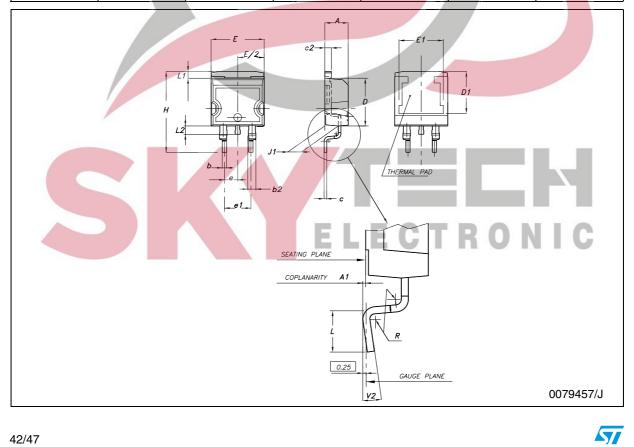
40/47

ым		mm.		inch		
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А	4.47		4.67	0.176		0.184
b	0.70		0.91	0.028		0.036
b1	1.17		1.37	0.046		0.054
с	0.31		0.53	0.012		0.021
D	14.60		15.70	0.575		0.618
E	9.96		10.36	0.392	1	0.408
е		2.54			0.100	
e1		5.08			0.200	
F	1.17		1.37	0.046		0.054
H1	6.1		6.8	0.240		0.268
J1	2.52		2.82	0.099		0.111
L	12.70		13.80	0.500		0.543
L1	3.20		3.96	0.126		0.156
L20	15.21		16.77	0.599		0.660
φP	3.73		3.94	0.147		0.155
Q	2.59		2.89	0.102		0.114



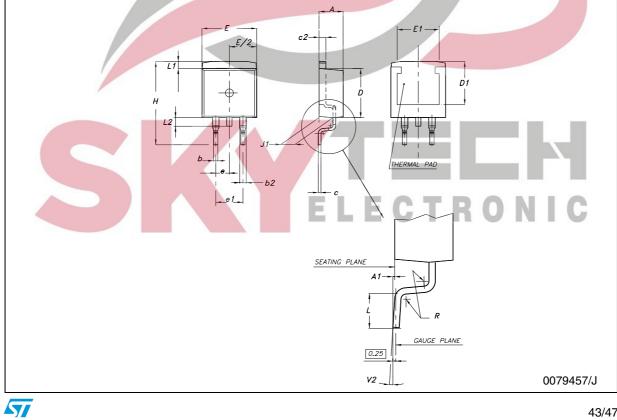
57

DIM.		mm.		inch		
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.70	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.50	0.045		0.059
F2	1.15		1.50	0.045		0.059
G	4.95		5.2	0.194		0.204
G1	2.4		2.7	0.094		0.106
Н	10.0		10.40	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L5	2.9		3.6	0.114		0.142
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366



41/47

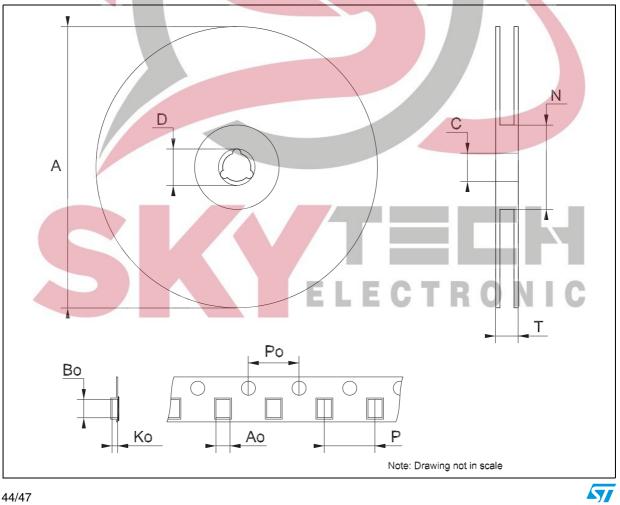
Package mechanical data


D²PAK (A TYPE) MECHANICAL DATA

DIM.		mm.		inch		
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
Α	4.4		4.6	0.173		0.181
A1	0.03		0.23	0.001		0.009
b	0.7		0.93	0.027		0.036
b2	1.14		1.7	0.044		0.067
С	0.45		0.6	0.017		0.023
c2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1	8			0.315		
E	10		10.4	0.393		0.409
E1	8.5			0.335		
е		2.54			0.100	
e1	4.88		5.28	0.192		0.208
Н	15		15.85	0.590		0.624
J1	2.49		2.69	0.098		0.106
L	2.29		2.79	0.090		0.110
L1	1.27		1.4	0.050		0.055
L2	1.3		1.75	0.051		0.069
R		0.4			0.016	
V2	0°		8°	0°		8°

42/47

DIM		mm.			inch		
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	МАХ	
А	4.3		4.7	0.169		0.185	
A1	0		0.20	0.000		0.008	
b	0.70		0.90	0.028		0.035	
b2	1.17		1.37	0.046		0.054	
С	0.45	0.50	0.6	0.018	0.020	0.024	
c2	1.25	1.30	1.40	0.049	0.051	0.055	
D	9.0	9.2	9.4	0.354	0.362	0.370	
D1	7.5			0.295			
E	9.8		10.2	0.386		0.402	
E1	7.5			0.295			
е		2.54			0.100		
e1		5.08			0.200		
Н	15	15.30	15.60	0.591	0.602	0.614	
J1	2.20		2.60	0.087		0.102	
L	1.79		2.79	0.070		0.110	
L1	1.0		1.4	0.039		0.055	
L2	1.2		1.6	0.047		0.063	
R		0.3			0.012		



D²PAK (C TYPE) MECHANICAL DATA

43/47

DIM.		mm.		inch		
DINI.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
Ν	60			2.362	1	
т			14.4			0.567
Ao	10.50	10.6	10.70	0.413	0.417	0.421
Во	15.70	15.80	15.90	0.618	0.622	0.626
Ко	4.80	4.90	5.00	0.189	0.193	0.197
Po	3.9	4.0	4.1	0.153	0.157	0.161
Р	11.9	12.0	12.1	0.468	0.472	0.476

Tape & Reel D²PAK-P²PAK-D²PAK/A-P²PAK/A MECHANICAL DATA

44/47

7 Order code

Dort			Pack	aging		
Part numbers	ТО-220 (А Туре)	ТО-220 (С Туре)	D ² PAK (A Type)	D ² PAK (C Type)	TO-220FP	то-з
L7805						L7805T
L7805C	L7805CV	L7805C-V	L7805CD2T-TR	L7805C-D2TR	L7805CP	L7805CT
L7852C	L7852CV		L7852CD2T-TR ⁽¹⁾		L7852CP ⁽¹⁾	L7852CT ⁽¹⁾
L7806C	L7806CV	L7806C-V	L7806CD2T-TR		L7806CP	L7806CT
L7808C	L7808CV	L7808C-V	L7808CD2T-TR		L7808CP	L7808CT
L7885C	L7885CV		L7885CD2T-TR ⁽¹⁾		L7885CP ⁽¹⁾	L7885CT ⁽¹⁾
L7809C	L7809CV	L7809C-V	L7809CD2T-TR		L7809CP	L7809CT
L7810C	L7810CV		L7810CD2T-TR ⁽¹⁾		L7810CP	
L7812C	L7812CV	L7812C <mark>-V</mark>	L7812CD2T-TR		L7812CP	L7812CT
L7815C	L7815CV	L7815C-V	L7815CD2T-TR		L7815CP	L7815CT
L7818C	L7818CV		L7818CD2T-TR ⁽¹⁾		L7818CP	L7818CT
L7820C	L7820CV		L7820CD2T-TR ⁽¹⁾		L7820CP ⁽¹⁾	L7820CT ⁽¹⁾
L7824C	L7824CV		L7824CD2T-TR		L7824CP	L7824CT

1. Available on request.

57

45/47

57

8 Revision history

Table 24.Revision history

Date	Revision	Changes
21-Jun-2004	12	Document updating.
03-Aug-2006	13	Order Codes has been updated and new template.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

47/47